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EXTENDED MATERIALS AND METHODS

1. Dataset construction

Complete HK-RR dataset. Our dataset is built using the on-
line database P2CS (http://www.p2cs.org/) [1, 2], which in-
cludes two-component-system proteins from all fully-sequenced
prokaryotic genomes. In the construction of P2CS, these pro-
teins were identified by searching genomes for two-component
system domains from the Pfam (http://pfam.xfam.org/) and
SMART (http://smart.embl-heidelberg.de/) libraries. We
kept only chromosome-encoded proteins, due to strong vari-
ability in plasmid presence. We also excluded hybrid and
unorthodox proteins, which involve both HK and RR domains
in the same protein, since the energetics of partnering is dif-
ferent and often less constraining for such proteins [3]. In
HKs, there are different domain variants in the vicinity of the
N-terminal Histidine-containing phosphoacceptor site, includ-
ing the region that interacts with RRs. These variants are
classified into several different Pfam domain families, which
are all members of the His_Kinase_A domain clan (CL0025).
In order to reliably align all HK sequences, we chose to focus
on only one of these Pfam domain families, HisKA (PF00512).
Proteins containing a HisKA domain account for the majority
(64%) of all chromosome-encoded, non-hybrid, orthodox HKs
in P2CS.

Proteins in P2CS are annotated based on genetic orga-
nization [2]. As our aim was to benchmark our method on
known, specific interaction partners, we only considered HKs
and RRs that are encoded by adjacent genes. Note that 67% of
all chromosome-encoded, non-hybrid, orthodox HKs in P2CS
are from such pairs. Suppressing the (rare) HKs with mul-
tiple HisKA domains and RRs with multiple Response_reg
domains for which the pairing of domains is ambiguous, this
yields 23,632 distinct pairs that differ in either sequence or
species. Discarding the 208 pairs from species with only one
such pair (see discussion below) yields a dataset of 23,424 HK-
RR pairs. Grouping together sequences with mean Hamming
distance per site < 0.3 (i.e. with 70% sequence identity or
more) to estimate sequence diversity yields an effective number
of HK-RR pairs Meff = 5391 in the complete dataset.

These 23,424 HK-RR pairs are from 2102 different species,
with numbers of pairs per species ranging from 2 to 41, with
mean 〈mp〉 = 11.1. The distribution of the number of pairs
per species in our complete dataset is shown in Fig. S6A.

Standard HK-RR dataset. In most of our work, we focused on
a smaller “standard dataset” extracted from this complete
dataset, both because protein families that possess as many
members as the HKs and RRs are atypical, and in view of
computational time constraints. Note, however, that our IPA

was used to make predictions on the complete dataset, yielding
a striking 0.93 final TP fraction (Fig. S7).

Our standard dataset was constructed by picking species
randomly. Once 43 species with one single pair are suppressed
(see discussion below), it comprises 5064 pairs from 459 species,
with an average number of pairs per species 〈mp〉 = 11.0, which
is very close to that of the complete dataset (see Fig. S6A for
the distributions of the number of pairs per species). Grouping
together sequences with mean Hamming distance per site < 0.3
to estimate sequence diversity yields an effective number of
HK-RR pairs Meff = 2091 in the standard dataset.

Suppressing species with a single pair. In our datasets, we
discarded sequences from species that contain only one known
pair, for which pairing is therefore unambiguous. This allowed
us to quantitatively assess the impact of training set size
(Nstart) without the inclusion of an implicit training set via
these pairs. More importantly, this enabled us to address
prediction in the absence of any known pairs (no training
set), which is crucial for predicting unknown protein-protein
interactions between protein families, since no training set is
then available. For other purposes, pairs from species with only
one known pair might be included as a training set (but then
one would need to be sure that they are actually interacting,
because any error in the training set would be detrimental for
the model). In our standard HK-RR dataset, if the 43 pairs
from species with a single pair are treated as a training set
instead of being discarded, the IPA yields a final TP fraction
of 0.88 (vs. 0.84 starting from random pairings, i.e. in the
absence of any training set). This value is the same as the
one obtained for Nstart = 50 (0.88, value averaged over 50
different random choices of the 50 training pairs, see Fig. 2).
Interestingly, by exploiting multiple random initializations, a
TP fraction of 0.89 is reached starting from random pairings
(Fig. S8).

Multiple sequence alignment of HKs and RRs. All HKs in
our dataset were aligned to the profile hidden Markov
model (HMM) representing the Pfam HisKA domain
(PF00512) using the hmmalign tool from the HMMER suite
(http://hmmer.org/). Similarly, all RRs were aligned to the
profile HMM representing the Pfam Response_reg domain
(PF00072). The aligned sequences of each HK were then
concatenated to those of their RR partner, yielding a con-
catenated multiple sequence alignment. The length of each
concatenated sequence is L = 176 amino acids, among which
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the LHK = 64 first amino acids are from the HK, and the
remaining 112 amino acids are from the RR. The full length
of these sequences was kept throughout.

Dataset construction for ABC transporter proteins. While we
used HK-RRs as the main benchmark for the IPA, we also
applied it to several pairs of protein families involved in ABC
(ATP-binding cassette) transporter complexes. These ubiqui-
tous complexes enable ATP-powered translocation of various
substances through membranes [4]. As in the case of HK-RRs,
bacterial genomes typically contain multiple paralogs of these
transporters, and actual pairings are known from genome
proximity, enabling us to assess the success of the IPA.

We built paired alignments of homologs of the Es-
cherichia coli interacting protein pairs MALG-MALK,
FBPB-FBPC, and GSIC-GSID, all involved in ABC
transporter complexes, using a method adapted from
Ref. [5] and http://gremlin.bakerlab.org/. First, the
homologs of each protein were retrieved from Uniprot
(http://www.uniprot.org/) using hhblits from the HH-suite
(https://github.com/soedinglab/hh-suite) with main op-
tions -n 8 -e 1E-20. Then hhfilter from the HH-suite was
run with options -id 100 -cov 75 to only retain the homologs
that have at least 75% coverage. In order to focus on the rel-
evant conserved domains involved in binding, as we did for
HK-RRs, we then used hmmsearch from the HMMER suite to
align a subsequence of each homolog to the profile HMM of the
appropriate domain from Pfam. These domains are ABC_tran
(PF00005) for MALK, and BPD_transp_1 (PF00528) for all
other ABC transporter proteins considered here. For each
pair of interacting protein families, sequences from the same
species (found via the OX/OS field in the Uniprot headers)
were then paired to their interacting partner by genome prox-
imity (assessed via the Uniprot accession numbers, and using a
maximum allowed difference of 20 between these IDs). These
pairings enabled us to evaluate IPA performance (Fig. 5), as in
the HK-RR case. Note that the paired alignment of HK-RRs
homologous to BASS-BASR was constructed in the same way
as the alignments of these ABC-transporter protein pairs.

We also considered a pair of protein families with no known
interactions: BASR homologs (Response_reg domain) and
MALK homologs (ABC_tran domain). These two protein
families have very different biological functions, and no inter-
action between BASR and MALK has been reported in the
STRING database (http://string-db.org/).

As in the case of HK-RRs, for each pair of protein families,
we worked on subsets of ∼ 5000 protein pairs extracted from
the complete dataset by randomly picking species, and we
discarded species with a single pair.

2. Statistics of the concatenated alignment (CA)

Henceforth, as in the main text, we will present our general
method in the specific case of HK-RRs. Note that we applied
it in the exact same way to ABC transporter protein pairs.

Let us consider a CA of paired HK-RR sequences. At
each site i ∈ {1, ..,L}, where L is the number of amino-acid
sites, a given concatenated sequence can feature any amino
acid (denoted by α with α ∈ {1, .., 20}), or a gap (denoted by
α = 21), yielding 21 possible states α for each site i.

To describe the statistics of the alignment, we only employ
the single-site frequencies of occurrence of each state α at

each site i, denoted by fei (α), and the two-site frequencies of
occurrence of each ordered pair of states (α,β) at each ordered
pair of sites (i, j), denoted by feij(α,β) [6]. The raw empirical
frequencies, obtained by counting the sequences where given
residues occur at given sites and dividing by the number M
of sequences in the CA, are subject to sampling bias, due to
phylogeny and to the choice of species that are sequenced [7, 8].
Hence, to define fei and feij , we use a standard correction that
re-weights “neighboring” concatenated sequences with mean
Hamming distance per site < 0.3. The value of this similarity
threshold is arbitrary, but our results depend very weakly
on this choice, even when taking the threshold down to zero.
The weight associated to a given concatenated sequence a is
1/ma, where ma is the number of neighbors of a within the
threshold [7–9]. This allows one to define an effective sequence
number Meff via

Meff =
M∑
a=1

1
ma

. [S1]

To avoid issues such as amino acids that never appear at
some sites, which would present mathematical difficulties, e.g.
a non-invertible correlation matrix and diverging couplings [7],
we introduce pseudocounts via a parameter Λ [6–9]. The
one-site frequencies fi become

fi(α) = Λ
q

+ (1− Λ)fei (α) , [S2]

where q = 21 is the number of states (i.e. of amino acids,
including gaps) per site. Similarly, the two-site frequencies fij
become

fij(α,β) = Λ
q2 + (1− Λ)feij(α,β) if i 6= j , [S3]

fii(α,β) = Λ
q
δαβ + (1− Λ)feii(α,β) = fi(α)δαβ , [S4]

where δαβ = 1 if α = β and 0 otherwise. These pseudocount
corrections are uniform (i.e. they have the same weight 1/q
on all amino-acid states), and their importance relative to the
raw empirical frequencies can be tuned through the parameter
Λ. In practice, we take Λ = 0.5, which has been shown to be
a satisfactory choice [7, 8]. Note that the correspondence of
Λ with the parameter λ in Refs. [7–9] is obtained by setting
Λ = λ/(λ+Meff).

From these quantities, we define the two-point correlations

Cij(α,β) = fij(α,β)− fi(α)fj(β) . [S5]

3. Maximum entropy model

Formulation. The maximum entropy principle [10] yields the
following form for the least-structured global (L-point) proba-
bility distribution P of sequences consistent with the empirical
one- and two-point statistics of the CA:

P (α1, ...,αL) = 1
Z

exp

{
−

[
L∑
i=1

hi(αi) +
∑
i<j

eij(αi,αj)

]}
,

[S6]
where Z is a normalization constant. Each one-body term hi
is known as the field at site i, and each two-body interaction
term eij is known as the (direct) coupling between sites i
and j. The fields hi and the couplings eij are determined
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by imposing that the probability distribution P be consistent
with the empirical one- and two-point frequencies fi and fij :∑

αk,k 6=i

P (α1, ...,αL) = fi(αi) , [S7]

∑
αk,k/∈{i,j}

P (α1, ...,αL) = fij(αi,αj) . [S8]

Such pairwise interaction maximum entropy models have
proved very successful in various fields (see e.g. Refs. [11–19]),
including the prediction of protein structures and inter-protein
contacts from multiple sequence alignments (see e.g. Refs. [6–
8]). In particular, high couplings eij are better predictors of
real contacts in proteins than high correlations Cij , because
the eij represent minimal direct couplings between amino
acids, while high Cij can arise from indirect effects [6–8].

Inference of the parameters. Eqs. S7 and S8 alone do not
uniquely define all the fields hi(α) and couplings eij(α,β)
with 1 ≤ i < j ≤ L involved in Eq. S6, which amount to
Lq+L(L− 1)q2/2 parameters, where q = 21 is the number of
amino-acid states α. Indeed, while the number of equations in
Eqs. S7 and S8 is the same as that of the empirical frequencies,
the latter are not all independent. The two-site frequencies are
symmetric (fij(α,β) = fji(β,α)) and consistent with the one-
site frequencies (fii(α,β) = fi(α)δαβ ;

∑
β
fij(α,β) = fi(α);

and
∑

α
fij(α,β) = fj(β)), which sum to one (

∑
α
fi(α) = 1).

All these constraints reduce the number of independent vari-
ables among the one- and two-site frequencies, and thus of
independent equations, to L(q− 1) +L(L− 1)(q− 1)2/2 [6, 7].
This yields a degree of freedom in the determination of the
fields and couplings from Eqs. S7 and S8. Given the number
of independent equations, one possible gauge choice is to set
to zero the fields and couplings for one given state, e.g. state
q (the gap) [7, 8]: hi(q) = 0 and, for all α,

eij(α, q) = eij(q,α) = 0 . [S9]

Determining the remaining fields hi and the couplings eij
from Eqs. S7 and S8 is difficult, and various approximations
have been developed to solve this problem. Following Refs [7,
8], we use the mean-field or small-coupling approximation,
which was introduced in Ref. [20] for the Ising spin-glass model.
In this approximation, for i 6= j and α,β < q, the couplings
are given by eij(α,β) = A−1

kl , where A is a (q− 1)L× (q− 1)L
correlation matrix: Akl = Cij(α,β), where k = (q−1)(i−1)+α
and l = (q − 1)(j − 1) + β [21]. This can be summarized as

eij(α,β) = C−1
ij (α,β) . [S10]

Together, Eqs. S9 and S10 yield all the couplings. Note that
the couplings are symmetric (eij(α,β) = eji(β,α)) since the
correlations are.

This simple mean-field approximation has been used with
success for protein structure prediction [7, 8]. (More sophisti-
cated approximations typically improve performance by less
than ten percent [21, 22].) Moreover, this approximation is
computationally fast, since it only requires the inversion of
a (20L)× (20L) correlation matrix. Computational rapidity
is a considerable asset for our purpose, given that the IPA
performs better with smaller increment step size Nincrement
(see Fig. 3), i.e. with more iterations, and that the couplings
eij are computed at each iteration. This approximation also

enabled us to use the full-length sequences of domains to infer
couplings, without needing to restrict to a subset of amino-
acid sites as in some other works using more sophisticated
approximations [6, 9]. We find that using full-length sequences
increases the resulting TP fraction.

Gauge choice. Qualitatively, the gauge degree of freedom
means that contributions to the effective energy of the system

H =
L∑
i=1

hi(αi) +
∑
i<j

eij(αi,αj) [S11]

can be shifted between the fields and the couplings [6]. Since
our focus is on interactions, we do not want the couplings
to include contributions that can be accounted for by the
(one-body) fields [23]. The zero-sum (or Ising) gauge, where
the couplings satisfy∑

α

eij(α,β) =
∑
β

eij(α,β) = 0 , [S12]

minimizes the Frobenius norms of the couplings

‖eij‖ =

√√√√ q∑
α,β=1

[eij(α,β)]2 . [S13]

Hence, the zero-sum gauge attributes the smallest possible
fraction of the energy in Eq. S6 to the couplings, and the
largest possible fraction to the fields [6, 21]. Furthermore,
when employing this gauge, the Frobenius norm has proved to
be a successful predictor of contacts in proteins [21, 22]. In par-
ticular, within the mean-field approximation Eq. S10, the use
of the Frobenius norm (with an average-product correction) im-
proves over the results obtained using direct information [21].

Thus, after calculating the couplings as described above,
we change the gauge from the one defined in Eq. S9 to the one
defined in Eq. S12, by replacing each coupling eij(α,β) by

eij(α,β)− 〈eij(γ,β)〉γ − 〈eij(α, δ)〉δ + 〈eij(γ, δ)〉γ,δ , [S14]

where 〈.〉γ denotes an average over γ ∈ {1, ..., q} [21].
Note that in Fig. 4, we use the Frobenius norm without

the average-product correction [21]. With this correction, im-
plemented by averaging within single proteins [5], we obtained
similar results (see Fig. S13). Overall, with the correction, final
performance is slightly worse, but training is visible slightly
earlier in the IPA.

4. Iterative pairing algorithm (IPA)

The main steps of the IPA are shown in Fig. 1C. Here, we
describe each of these steps in detail, after explaining how the
CA is constructed for the very first iteration.

Initialization of the CA.

Starting from a training set of HK-RR pairs. The CA for the first
iteration of the IPA is built from the pairs in the training
set, which are considered as known interaction partners. In
subsequent iterations, the training set pairs are always kept
in the CA, and additional pairs with the highest confidence
scores (see below) are added to the CA.

Bitbol et al. 3



Starting from random pairings. In the absence of a training set,
each HK of the dataset is randomly paired with an RR from
its species. All M pairs, where M represents the total number
of HKs, or, equivalently, RRs, in the dataset, are included in
the CA for the first iteration of the IPA. Hence, this initial
CA contains a mixture of correct and incorrect pairs, with one
correct pair per species on average. At the second iteration,
the CA is built using only the Nincrement HK-RR pairs with
the highest confidence scores obtained from this first iteration.

There are other ways to initialize the CA in the absence of
a training set. We varied the number of pairs included at the
second iteration (Nincrement in the above scheme), and we also
tried constructing the first CA from all possible HK-RR pairs
from the species with few pairs (as for these species, exhaustive
pairing yields a larger proportion of true pairs). These variants
did not significantly increase the final TP fraction. Moreover,
the random initialization of the CA can be exploited to increase
the TP fraction (Figs. S10 and S9), which would be impossible
for exhaustive initializations.

Now that we have described the initial construction of the
CA, we describe each step of an iteration of the IPA (Fig. 1C).

Step 1: Correlations. At each iteration, the empirical one-
and two-body frequencies are computed for the CA, using
the re-weighting of neighbor sequences and the pseudocount
correction described above (see Eqs. S1-S4). The empirical
correlations Cij are then deduced using Eq. S5.

Step 2: Direct couplings. The direct couplings in the pairwise
maximum entropy model of the CA are inferred from the
empirical correlations using Eqs. S9 and S10. The gauge is
then changed to the zero-sum gauge (Eq. S12) using Eq. S14.

Step 3: Interaction energies for all possible HK-RR pairs. The
interaction energy E of each possible HK-RR pair within each
species of the dataset is calculated by summing the appropriate
direct couplings:

E (α1, ...,αLHK ,αLHK+1, ...,αL) =
LHK∑
i=1

L∑
j=LHK+1

eij(αi,αj) ,

[S15]
where LHK denotes the length (i.e. the number of amino-acid
sites) of the HK sequence and L that of concatenated HK-
RR sequence. Note that this HK-RR interaction energy only
involves the inter-molecular couplings (i ≤ LHK and j > LHK;
the case i > LHK and j ≤ LHK does not need to be considered
as the couplings are symmetric).

Step 4: HK-RR pair assignments and ranking by energy gap.

HK-RR pair assignments. In each separate species, the pair with
the lowest interaction energy is selected first, and the HK and
RR from this pair are removed from further consideration,
since we assume one-to-one HK-RR matches (see Fig. 1D).
Then, the pair with the next lowest energy is chosen, and the
process is repeated until all HKs and RRs are paired.

Scoring by gap. Each assigned HK-RR pair is scored at the time
of assignment by ∆E/(n + 1), where ∆E is the energy gap
between the match with the lowest energy and the next best
one (see Fig. 1E), and n is the number of lower-energy matches
discarded in assignments made previously (within that species

and at that iteration). Qualitatively, the larger the energy gap,
and the smaller the number n of rejected better candidates,
the more reliable we expect the assignment to be.

More precisely, ∆ERR = ERR,2 − ERR,1 > 0 is computed
for the RR involved as minus the difference of the interaction
energy ERR,1 of this RR with its assigned partner (i.e. the
“best” HK, which yields the lowest interaction energy with this
RR, among the HKs that are still unpaired) and that ERR,2
with the second-best HK among the HKs that are still unpaired.
Meanwhile, nRR is the number of HKs of that species that
had lower interaction energies with this RR than the assigned
partner, but that have been eliminated previously in that
iteration’s pairing process, because they were paired to other
RRs with a lower interaction energy. A schematic example
is shown on Fig. S12A. Similarly, the value of ∆EHK and of
nHK are calculated for the HK involved in the assigned pair.
Finally, the lowest score among the two obtained is kept:

∆E
n+ 1 = min

(
∆ERR

nRR + 1, ∆EHK

nHK + 1

)
. [S16]

We have chosen to divide the energy gap ∆E by n+1 in or-
der to penalize the HK-RR pairs made after better candidates
were discarded, even if their current gap among remaining can-
didates appears large, as illustrated by the second assignment
in Fig. S12A. However, one could consider other definitions
of confidence scores, such as ∆E/(n + 1)α, where α is a pa-
rameter. In Fig. S12B, we show that our confidence score
significantly improves TP fraction over the raw energy gap
∆E, and that α = 1 yields an optimal TP fraction.

This definition of the confidence score leaves an ambiguity
for the last assigned pair of each species, since there is no
remaining second-best match to define the energy gap. We
have chosen to assign to this pair a confidence score equal to
the lowest other one within the species, given that this pair,
made by default, should not be deemed more reliable than any
other pair in the species.

Another ambiguity exists when several pairs have exactly
the same interaction energy. This mostly occurs when the
model is built from one single HK-RR concatenated sequence
(this case is not singular thanks to the pseudocount correction,
and the model then yields a lower energy contribution for each
residue pair identical to the initial concatenated sequence, and
a higher energy contribution for each residue pair comprising
one same and one different residue compared to the initial
concatenated sequence). It also occurs in the extremely rare
case where two identical HK (or RR) sequences are found in
the same genome. In this case, we chose to randomly make one
pair assignment between the equivalent matches, and to leave
the other equal energy HKs and/or RRs to be paired later.
We checked that the impact of this choice on final results is
very small.

Ranking of pairs. Once all the HK-RR pairs are assigned and
scored, we rank them in order of decreasing confidence score.

Step 5: Incrementation of the CA. The ranking of the HK-RR
pairs is used to pick those pairs that are included in the CA
at the next iteration. Pairs with a high confidence score are
more likely to be correct because there was less ambiguity in
the assignment. The number of pairs in the CA is increased
by Nincrement at each iteration, and the IPA is run until all the
HKs and RRs in the dataset have been paired and added to
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the CA. In the last iteration, all pairs assigned at the second
to last iteration are included in the CA.

Starting from a training set of HK-RR pairs. The Nstart training
pairs remain in the CA throughout and the HKs and RRs
involved in these pairs are not paired or scored by the IPA.
The HKs and RRs from all the other pairs in the CA are
re-paired and re-scored at each iteration, and only re-enter the
CA if their confidence score is sufficiently high. In other words,
at the first iteration, the CA only contains the Nstart training
pairs. Then, for any iteration number n > 1, it contains these
exact same Nstart training pairs, plus the (n − 1)Nincrement
assigned HK-RR pairs that had the highest confidence scores
at iteration number n− 1.

Starting from random pairings. In the absence of a training set,
all M HKs and RRs in the dataset are paired and scored at
each iteration, and all the pairs of the CA are fully re-picked
at each iteration based on the confidence score. The first
iteration is special, since the CA is made of M random within-
species HK-RR pairs (see above, “Initialization of the CA”).
Then, for any iteration number n > 1, the CA contains the
(n− 1)Nincrement assigned HK-RR pairs that had the highest
confidence scores at iteration number n− 1.

Once the new CA is constructed, the iteration is completed,
and the next one can start with Step 1, the computation of
the empirical correlations in this CA.

Run time. The run time of the IPA strongly depends on
Nincrement and on dataset size (length of concatenated se-
quences, number of such sequences in the dataset). For our
standard HK-RR dataset, all single-processor run times for a
Matlab-coded version of the IPA were shorter than one day
down to Nincrement = 6.

Bitbol et al. 5



SUPPORTING FIGURES

Fig. S1. Evolution of the coupling matrix and of the concatenated alignment (CA) during the IPA. (A) Training of the coupling matrix. As in Fig. 4A, pairs comprised of an HK
residue site and an RR residue site are scored by the Frobenius norm (i.e. the square root of the summed squares) of the couplings involving all possible residue types at these
two sites. The 10 best-scored pairs are compared to the main specificity residues determined experimentally in Refs. [24–27] (5 HK residues, T267, A268, A271, Y272, and
T275 in the sequence of T. maritima HK853, and 5 RR residues, V13, L14, I17, N20, and F21 in the sequence of T. maritima RR468 [26]). Solid curves: Fraction of the 10
best-scored residue pairs that include HK and/or RR specificity residues versus the iteration number in the IPA. Dashed curves: Ideal case, where at each iteration Nincrement

randomly-selected correct HK-RR pairs are added to the CA. Dash-dotted curves: Case where random HK-RR pairs are added to the CA. Dotted lines: Overall fraction of
residue pairs that include specificity residues. (B) Neighbor recruitment. Average number of neighbors an HK-RR pair of the CA has among the new HK-RR pairs of the next CA
versus iteration number. Two pairs are considered neighbors if the mean Hamming distance per site between the two HKs and between the two RRs are both < 0.3. Dashed
line: Null model – at each iteration, Nincrement new correct HK-RR pairs are chosen at random and added to the CA. Inset: Expanded view of the first 50 iterations. In both panels,
the IPA is performed on the standard dataset with Nincrement = 6. In panel A (resp. B), data is averaged over 500 (resp. 5193) replicates that differ in their initial random pairings.
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Fig. S2. Impact of the distribution of the number of HK-RR pairs per species. (A) Distribution of the number of pairs per species in two different datasets: the standard one (red)
and one with the same total number of HK-RR pairs M and the same mean number of pairs per species 〈mp〉, but with a more strongly peaked distribution (blue). (B) Final TP
fraction versus Nincrement for the two datasets described in (A). All results are averaged over 50 replicates that differ in their initial random pairings. Dashed line: Average TP
fraction obtained for random HK-RR pairings.
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Fig. S3. Impact of the number of HK-RR pairs per species: starting from a training set. Final TP fraction versus Nstart for the three datasets with different distributions of the
number of pairs per species yielding different means 〈mp〉 presented in Fig. 5. Colored arrows indicate the average TP fractions obtained for random HK-RR pairings in each
dataset. The IPA is performed on the standard dataset with Nincrement = 6. All results are averaged over 50 replicates that differ by the random choice of pairs in the training set.

Fig. S4. Impact of the initial correct pairs. TP fraction versus effective number of HK-RR pairs (Meff) in the concatenated alignment during iterations of the IPA, for different
values of Nincrement. Solid curves: Starting from random pairings (data also shown in Fig. 3). Dashed curves: Starting from random pairings with no initial correct pair (the color
and symbol codes are the same as for the solid curves). The standard dataset is used. All results are averaged over 50 replicates that differ in their initial random pairings.
Dotted line: Average TP fraction obtained for random HK-RR pairings.

Fig. S5. Evolution of the concatenated alignment (CA) during the IPA. Average number of HK-RR pairs present in the species to which the pairs of the CA belong versus
iteration number. The IPA is performed on the standard dataset, with Nincrement = 6, and all data is averaged over 5193 replicates that differ in their initial random pairings.
Dashed line: At each iteration, 6 new correct HK-RR pairs are chosen at random and added to the CA. This “chance” result just matches the average number of pairs in a pair’s
species: 16.1. Note that this number is different from the above-discussed average number of pairs per species 〈mp〉, which is 11.0 in the standard dataset (because the
average over the pairs is not the same as the average over the species).
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Fig. S6. Impact of sequence similarity in the dataset. (A) Distribution of the number of pairs per species in the complete dataset (black) and in two smaller selected datasets
each with the same effective number of HK-RR pairs Meff: the standard one (red) and one where similar sequences have been suppressed such that no two pairs have a mean
Hamming distance per site < 0.3 (blue). (B) Final TP fraction versus Nincrement for the two selected datasets described in (A), starting from random pairings. Dashed line:
Average TP fraction obtained for random HK-RR pairings. (C) Starting from a training set. Final TP fraction versus Nstart for the two selected datasets presented in (A), with
Nincrement = 6. In (B) and (C), all results are averaged over 50 replicates.
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Fig. S7. Impact of the total number of HK-RR pairs in the dataset. Final TP fraction versus the total number M of HK-RR pairs in the dataset, starting from random pairings. For
each M, datasets are constructed by picking species randomly from the full dataset, preserving the average distribution of the number of HK-RR pairs per species. For each M
except the largest, results are averaged over multiple different such alignments (from 50 up to 500 for small M). For the largest M (full dataset), averaging is done on 50
different initial random pairings. All results correspond to the small-Nincrement limit.

Fig. S8. Improved accuracy from multiple initial random pairings. Red curve: All possible HK-RR pairs (within each species) are ranked by the fraction fr of replicates of the IPA
in which they are predicted. The TP fraction up to each pair is plotted versus the rank of this pair. The standard dataset is used, with Nincrement = 6. 500 replicates that differ in
their initial random pairings are considered. Blue curve: For each separate replicate, pairs are ranked by their confidence score, in decreasing order. The TP fraction up to each
pair is computed, and the mean of these curves is shown. Dashed curve: Ideal classification, where the M = 5064 first pairs (dotted line) are correct, while all the others are
incorrect. When ranking pairs by decreasing fr (red curve), the TP fraction among the M = 5064 best-ranked pairs is 0.89, a significant improvement over the average of TP
fractions from individual replicates, 0.84 (blue curve).
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Fig. S9. Rebootstrapping: exploiting the high TP fraction of the HK-RR pairs predicted to be correct in most replicates of the IPA, which differ in their initial random pairings. (A)
Rebootstrapping on the standard dataset (M = 5064 HK-RR pairs). The final TP fraction is plotted versus rebootstrapping step number. Step 0 corresponds to the IPA starting
from random pairings (see main text and Fig. 6). 500 replicates are computed. We then take as a training set 1000 HK-RR pairs chosen randomly among those predicted to
be correct in more than 50% of replicates. These pairs are chosen with probability equal to the fraction of replicates in which they are predicted to be true. The IPA is then
performed again starting from such training sets. The process is then iterated. Here, 50 replicates were computed for steps 1, 2, and 3. The average final TP fraction is plotted
(blue curve), as well as the TP fraction for the best M = 5064 pairs ranked by the fraction of replicates in which they are predicted to be true (red curve, see Fig. 6). Here,
Nincrement = 6. (B) Rebootstrapping on a smaller dataset with M = 502 HK-RR pairs from 40 species (mean number of pairs per species 〈mp〉 = 12.6). The process is the same
as in (A), but here, at each rebootstrapping step, we take as a training set 200 HK-RR pairs chosen randomly among those predicted to be true in more than 25% of replicates
at the previous step, and Nincrement = 1.
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Fig. S10. Distribution of the fraction of replicates fr of the IPA in which each possible within-species HK-RR pair is predicted as a pair. (A) Red curve: Distribution of fr obtained
by applying the IPA to the standard dataset (same data as in Fig. S8). Blue curve: Same dataset, but with each column of the alignment randomly scrambled. (B) HK-RR
dataset with no correct pairs; a dataset of the same size as the standard one (M = 5062 in practice) that does not include any true HK-RR pairs was constructed. Red curve:
Distribution of fr obtained by applying the IPA to this dataset with no correct pairs. Blue curve: Same alignment, but with each column randomly scrambled. For each curve, 500
IPA replicates that differ in their initial random pairings were used, with Nincrement = 6. All data is binned into 50 equally-spaced bins between fr = 0 and fr = 1.
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Fig. S11. Residue-based signature of protein-protein interactions. The Frobenius norm of the amino-acid couplings was evaluated for each pair of residue sites at the final
iteration of the IPA, for datasets comprising∼5000 homologs of the interacting pairs BASS-BASR and MALG-MALK, and of the non-interacting pair BASR-MALK. For each of
these protein family pairs, the Frobenius norms were also calculated at the final iteration of the IPA on scrambled-within-column datasets (null model). (A) Frobenius norms
averaged over 500 IPA replicates that differ in their initial random pairings, and then ranked by decreasing value. (B) Same average Frobenius norms, normalized by subtracting
the average null value for each residue pair. For each curve, the IPA was run with Nincrement = 50. The pairs with highest Frobenius norms, corresponding to the top predicted
contacts, are outliers for both interacting family pairs, but not for the non-interacting pair BASR-MALK.
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Fig. S12. Scoring by gap. (A) Determination of the confidence score of each assigned HK-RR pair in a given iteration of the IPA. In this schematic, we consider a species with
three HKs and RRs. In the energy spectra showing the interaction energies for each RR with all three HKs, each color represents a given HK (red: HK 1, partner of RR 1;
blue: 2; green: 3). Assignment 1: The pair with the lowest interaction energy (HK 2 - RR 2, boxed) is selected. The energy gap ∆ERR is shown. Here nRR = 0 since no HK
has been removed from consideration yet. Assignment 2: The HK and RR previously paired are removed from further consideration (dashed energy levels). The next pair
with the lowest energy (HK 1 - RR 3, boxed) is chosen among the remaining ones. Here nRR = 1 since HK 2, which was paired previously, had a lower interaction energy
with RR 3 than HK 1. Using the ad hoc confidence score ∆ERR/(nRR + 1), this (incorrect) pair is penalized with respect to the (correct) one made in the first assignment,
even though their energy gaps are similar. Assignment 3: Only one possible pair remains. It is made, and its confidence score is taken to be equal to the lowest previously
calculated confidence score for that species (the second one here). At each HK-RR pair assignment, symmetric confidence scores ∆EHK/(nHK + 1) are also calculated from
the energy spectra showing the interaction energies for each HK with all three RRs. The final confidence score of a pair, denoted by ∆E/(n + 1), is the smallest of these two
scores, i.e. min{∆ERR/(nRR + 1), ∆EHK/(nHK + 1)}. (B) More generally, in every iteration of the IPA, each predicted HK-RR pair can be scored by ∆E/(n + 1)α, where α is a
parameter. Red curve: Average final TP fraction obtained versus α; error bars: 95% confidence intervals around the mean. The IPA was performed on the standard dataset,
with Nincrement = 6. Results are averaged over 200 replicates that differ in their initial random pairings for all α except α = 1, for which 500 replicates were computed. As we
found the highest TP fraction for α = 1, all the results elsewhere in the paper were obtained using α = 1.
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Fig. S13. Training of the couplings during the IPA: effect of the average product correction. Residue pairs comprised of an HK site and an RR site were scored by the
average-product corrected Frobenius norm of the couplings involving all possible residue types at these two sites. The best-scored residue pairs were compared to the 27
HK-RR contacts found experimentally in Ref. [28]. Solid curves: Fraction of residue pairs that are real contacts (among the k best-scored pairs for four different values of k)
versus the iteration number in the IPA. Dashed curves: Ideal case, where at each iteration Nincrement randomly-selected correct HK-RR pairs are added to the CA. The overall
fraction of residue pairs that are real HK-RR contacts, yielding the chance expectation, is only 3.8× 10−3. As in Fig. 4, the IPA was performed on the standard dataset with
Nincrement = 6, and all data is averaged over 500 replicates that differ in their initial random pairings.
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